Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biochem J ; 481(6): 437-460, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38372302

ABSTRACT

Catalytic poly(ADP-ribose) production by PARP1 is allosterically activated through interaction with DNA breaks, and PARP inhibitor compounds have the potential to influence PARP1 allostery in addition to preventing catalytic activity. Using the benzimidazole-4-carboxamide pharmacophore present in the first generation PARP1 inhibitor veliparib, a series of 11 derivatives was designed, synthesized, and evaluated as allosteric PARP1 inhibitors, with the premise that bulky substituents would engage the regulatory helical domain (HD) and thereby promote PARP1 retention on DNA breaks. We found that core scaffold modifications could indeed increase PARP1 affinity for DNA; however, the bulk of the modification alone was insufficient to trigger PARP1 allosteric retention on DNA breaks. Rather, compounds eliciting PARP1 retention on DNA breaks were found to be rigidly held in a position that interferes with a specific region of the HD domain, a region that is not targeted by current clinical PARP inhibitors. Collectively, these compounds highlight a unique way to trigger PARP1 retention on DNA breaks and open a path to unveil the pharmacological benefits of such inhibitors with novel properties.


Subject(s)
Antineoplastic Agents , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Benzimidazoles/pharmacology , DNA Repair , DNA Breaks , DNA Damage
3.
Mol Med ; 27(1): 79, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34271850

ABSTRACT

BACKGROUND: High mobility group box 1 protein (HMGB1) is an alarmin following its release by immune cells upon cellular activation or stress. High levels of extracellular HMGB1 play a critical role in impairing the clearance of invading pulmonary pathogens and dying neutrophils in the injured lungs of cystic fibrosis (CF) and acute respiratory distress syndrome (ARDS). A heparin derivative, 2-O, 3-O desulfated heparin (ODSH), has been shown to inhibit HMGB1 release from a macrophage cell line and is efficacious in increasing bacterial clearance in a mouse model of pneumonia. Thus, we hypothesized that ODSH can attenuate the bacterial burden and inflammatory lung injury in CF and we conducted experiments to determine the underlying mechanisms. METHODS: We determined the effects of ODSH on lung injury produced by Pseudomonas aeruginosa (PA) infection in CF mice with the transmembrane conductance regulator gene knockout (CFTR-/-). Mice were given ODSH or normal saline intraperitoneally, followed by the determination of the bacterial load and lung injury in the airways and lung tissues. ODSH binding to HMGB1 was determined using surface plasmon resonance and in silico docking analysis of the interaction of the pentasaccharide form of ODSH with HMGB1. RESULTS: CF mice given 25 mg/kg i.p. of ODSH had significantly lower PA-induced lung injury compared to mice given vehicle alone. The CF mice infected with PA had decreased levels of nitric oxide (NO), increased levels of airway HMGB1 and HMGB1-impaired macrophage phagocytic function. ODSH partially attenuated the PA-induced alteration in the levels of NO and airway HMGB1 in CF mice. In addition, ODSH reversed HMGB1-impaired macrophage phagocytic function. These effects of ODSH subsequently decreased the bacterial burden in the CF lungs. In a surface plasmon resonance assay, ODSH interacted with HMGB1 with high affinity (KD = 3.89 × 10-8 M) and induced conformational changes that may decrease HMGB1's binding to its membrane receptors, thus attenuating HMGB1-induced macrophage dysfunction. CONCLUSIONS: The results suggest that ODSH can significantly decrease bacterial infection-induced lung injury in CF mice by decreasing both HMGB1-mediated impairment of macrophage function and the interaction of HMGB1 with membrane receptors. Thus, ODSH could represent a novel approach for treating CF and ARDS patients that have HMGB1-mediated lung injury.


Subject(s)
Cystic Fibrosis/complications , Cystic Fibrosis/metabolism , HMGB1 Protein/genetics , Heparin/analogs & derivatives , Macrophages/immunology , Macrophages/metabolism , Pneumonia, Bacterial/etiology , Pneumonia, Bacterial/metabolism , Animals , Bacterial Load , Biomarkers , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Disease Models, Animal , Disease Susceptibility , HMGB1 Protein/chemistry , HMGB1 Protein/metabolism , Heparin/chemistry , Heparin/metabolism , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Immunohistochemistry , Male , Mice , Mice, Knockout , Models, Molecular , Nitric Oxide/metabolism , Phagocytosis/immunology , Pneumonia, Bacterial/pathology , Protein Binding , RAW 264.7 Cells , Structure-Activity Relationship
4.
Expert Opin Ther Pat ; 31(7): 609-623, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33554679

ABSTRACT

INTRODUCTION: Discovery of small molecules that impede the activity of single-strand DNA repair enzyme, PARP1, has led to four marketed drugs for the treatment of advanced-stage cancers. Hence, there is a renewed enthusiasm in the PARP inhibitor discovery arena. To reduce nonspecific interactions or potential toxicities, and to understand the role of other minimally explored PARP enzymes, exciting new findings have emerged toward the development of selective inhibitors and targeted chemical biology probes. Importantly, the conventional PARP inhibitor design has evolved in a way that could potentially lead to multienzyme-targeting - a polypharmacological approach against aggressive cancers. AREAS COVERED: This review comprises recent progress made in the development of PARP inhibitors, primarily focused on human cancers. Discovery of novel PARP inhibitors with pan, selective, and multi-target inhibition using in vitro and in vivo cancer models is summarized and critically evaluated. Emphasis is given to patents published during 2016-2020, excluding TNKS 1/2 inhibitors. EXPERT OPINION: The outstanding success demonstrated by the FDA approved PARP inhibitors has fueled further clinical evaluations for expansion of their clinical utilities. The current clinical investigations include new candidates as well as marketed PARP-targeted drugs, both as single agents and in combination with other chemotherapeutics. Recent advances have also unveiled critical roles of other PARPs in oncogenic signal transduction, in addition to those of the well-documented PARP1/2 and TNKS1/2 enzymes. Further studies on lesser-known PARP members are urgently needed for functional annotations and for understanding their roles in cancer progression and other human diseases.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Animals , Drug Design , Drug Development , Drug Discovery , Humans , Neoplasms/pathology , Patents as Topic , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors
5.
Bioorg Chem ; 102: 104075, 2020 09.
Article in English | MEDLINE | ID: mdl-32777641

ABSTRACT

Poly(ADP-ribose) polymerase 1 (PARP1), a widely explored anticancer drug target, plays an important role in single-strand DNA break repair processes. High-throughput virtual screening (HTVS) of a Maybridge small molecule library using the PARP1-benzimidazole-4-carboxamide co-crystal structure and pharmacophore model led to the identification of eleven compounds. These compounds were evaluated using recombinant PARP1 enzyme assay that resulted in the acquisition of three PARP1 inhibitors: 3 (IC50 = 12 µM), 4 (IC50 = 5.8 µM), and 10 (IC50 = 0.88 µM). Compound 4 (2,3-dihydro-1,4-benzodioxine-5-carboxamide) was selected as a lead and was subjected to further chemical modifications, involving analogue synthesis and scaffold hopping. These efforts led to the identification of (Z)-2-(4-hydroxybenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazine-8-carboxamide (49, IC50 = 0.082 µM) as the most potent inhibitor of PARP1 from the series.


Subject(s)
Dioxins/chemical synthesis , Dioxins/therapeutic use , High-Throughput Screening Assays/methods , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Dioxins/pharmacology , Humans , Molecular Docking Simulation , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Structure-Activity Relationship
6.
Science ; 368(6486)2020 04 03.
Article in English | MEDLINE | ID: mdl-32241924

ABSTRACT

The success of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors (PARPi) to treat cancer relates to their ability to trap PARP-1 at the site of a DNA break. Although different forms of PARPi all target the catalytic center of the enzyme, they have variable abilities to trap PARP-1. We found that several structurally distinct PARPi drive PARP-1 allostery to promote release from a DNA break. Other inhibitors drive allostery to retain PARP-1 on a DNA break. Further, we generated a new PARPi compound, converting an allosteric pro-release compound to a pro-retention compound and increasing its ability to kill cancer cells. These developments are pertinent to clinical applications where PARP-1 trapping is either desirable or undesirable.


Subject(s)
Allosteric Regulation/drug effects , DNA Breaks/drug effects , DNA Damage/drug effects , Neoplasms/enzymology , Poly (ADP-Ribose) Polymerase-1/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Cell Line, Tumor , Humans , Isoindoles/chemistry , Isoindoles/pharmacology , Piperazines/chemistry , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Protein Domains
7.
J Med Chem ; 62(21): 9772-9791, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31584822

ABSTRACT

Clostridium difficile infection (CDI) is the leading cause of healthcare-associated infection in the United States. Therefore, development of novel treatments for CDI is a high priority. Toward this goal, we began in vitro screening of a structurally diverse in-house library of 67 compounds against two pathogenic C. difficile strains (ATCC BAA 1870 and ATCC 43255), which yielded a hit compound, 2-methyl-8-nitroquinazolin-4(3H)-one (2) with moderate potency (MIC = 312/156 µM). Optimization of 2 gave lead compound 6a (2-methyl-7-nitrothieno[3,2-d]pyrimidin-4(3H)-one) with improved potency (MIC = 19/38 µM), selectivity over normal gut microflora, CC50s > 606 µM against mammalian cell lines, and acceptable stability in simulated gastric and intestinal fluid. Further optimization of 6a at C2-, N3-, C4-, and C7-positions resulted in a library of >50 compounds with MICs ranging from 3 to 800 µM against clinical isolates of C. difficile. Compound 8f (MIC = 3/6 µM) was identified as a promising lead for further optimization.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Clostridioides difficile/drug effects , Pyrimidines/chemistry , Pyrimidines/pharmacology , Animals , Anti-Bacterial Agents/toxicity , Caco-2 Cells , Chlorocebus aethiops , Drug Design , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Conformation , Pyrimidines/toxicity , Stereoisomerism , Structure-Activity Relationship , Vero Cells
8.
J Med Chem ; 62(11): 5330-5357, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31042381

ABSTRACT

Poly(adenosine 5'-diphosphate-ribose) polymerase (PARP) inhibitors are a class of anticancer drugs that block the catalytic activity of PARP proteins. Optimization of our lead compound 1 (( Z)-2-benzylidene-3-oxo-2,3-dihydrobenzofuran-7-carboxamide; PARP-1 IC50 = 434 nM) led to a tetrazolyl analogue (51, IC50 = 35 nM) with improved inhibition. Isosteric replacement of the tetrazole ring with a carboxyl group (60, IC50 = 68 nM) gave a promising new lead, which was subsequently optimized to obtain analogues with potent PARP-1 IC50 values (4-197 nM). PARP enzyme profiling revealed that the majority of compounds are selective toward PARP-2 with IC50 values comparable to clinical inhibitors. X-ray crystal structures of the key inhibitors bound to PARP-1 illustrated the mode of interaction with analogue appendages extending toward the PARP-1 adenosine-binding pocket. Compound 81, an isoform-selective PARP-1/-2 (IC50 = 30 nM/2 nM) inhibitor, demonstrated selective cytotoxic effect toward breast cancer gene 1 ( BRCA1)-deficient cells compared to isogenic BRCA1-proficient cells.


Subject(s)
Adenosine/metabolism , Benzofurans/chemical synthesis , Benzofurans/pharmacology , Drug Design , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Amino Acid Motifs , Benzofurans/chemistry , Benzofurans/metabolism , Biocatalysis , Cell Line, Tumor , Chemistry Techniques, Synthetic , Humans , Inhibitory Concentration 50 , Models, Molecular , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Poly(ADP-ribose) Polymerases/chemistry , Structure-Activity Relationship
9.
J Med Chem ; 61(3): 834-864, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29251928

ABSTRACT

A novel set of 64 analogues based on our lead compound 1 was designed and synthesized with an initial objective of understanding the structural requirements of ligands binding to a highly perplexing substrate-binding site of P-glycoprotein (P-gp) and their effect on modulating the ATPase function of the efflux pump. Compound 1, a stimulator of P-gp ATPase activity, was transformed to ATPase inhibitory compounds 39, 53, and 109. The ATPase inhibition by these compounds was predominantly contributed by the presence of a cyclohexyl group in lieu of the 2-aminobenzophenone moiety of 1. The 4,4-difluorocyclohexyl analogues, 53 and 109, inhibited the photolabeling by [125I]-IAAP, with IC50 values of 0.1 and 0.76 µM, respectively. Selected compounds were shown to reverse paclitaxel resistance in HEK293 cells overexpressing P-gp and were selective toward P-gp over CYP3A4. Induced-fit docking highlighted a plausible binding pattern of inhibitory compounds in the putative-binding pocket of P-gp. The current study underscores the stringent requirement by P-gp to bind to chemically similar molecules.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Amino Acids/chemistry , Peptidomimetics/chemical synthesis , Peptidomimetics/pharmacology , Thiazoles/chemistry , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Binding Sites/drug effects , Chemistry Techniques, Synthetic , Humans , Molecular Docking Simulation , Peptidomimetics/chemistry , Peptidomimetics/metabolism , Protein Conformation , Structure-Activity Relationship
10.
Virus Genes ; 53(4): 522-531, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28425034

ABSTRACT

The molluscum contagiosum virus (MCV) uses a variety of immune evasion strategies to antagonize host immune responses. Two MCV proteins, MC159 and MC160, contain tandem death effector domains (DEDs). They are reported to inhibit innate immune signaling events such as NF-κB and IRF3 activation, and apoptosis. The RxDL motif of MC159 is required for inhibition of both apoptosis and NF-κB activation. However, the role of the conserved RxDL motif in the MC160 DEDs remained unknown. To answer this question, we performed alanine mutations to neutralize the arginine and aspartate residues present in the MC160 RxDL in both DED1 and DED2. These mutations were further modeled against the structure of the MC159 protein. Surprisingly, the RxDL motif was not required for MC160's ability to inhibit MAVS-induced IFNß activation. Further, unlike previous results with the MC159 protein, mutations within the RxDL motif of MC160 had no effect on the ability of MC160 to dampen TNF-α-induced NF-κB activation. Molecular modeling predictions revealed no overall changes to the structure in the MC160 protein when the amino acids of both RxDL motifs were mutated to alanine (DED1 = R67A D69A; DED2 = R160A D162A). Taken together, our results demonstrate that the RxDL motifs present in the MC160 DEDs are not required for known functions of the viral protein.


Subject(s)
Immune Evasion , Molluscum Contagiosum/virology , Molluscum contagiosum virus/immunology , Viral Proteins/chemistry , Viral Proteins/immunology , Amino Acid Motifs , Apoptosis , Humans , Interferon-beta/genetics , Interferon-beta/immunology , Molluscum Contagiosum/genetics , Molluscum Contagiosum/immunology , Molluscum Contagiosum/physiopathology , Molluscum contagiosum virus/chemistry , Molluscum contagiosum virus/genetics , Protein Domains , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...